Maths Calculation Policy

The following Calculation Policy has been largely adapted from the White Rose Maths Hub Calculation Policy and meets requirements of the National Curriculum 2014 for the teaching and learning of mathematics, in accordance with an increased emphasis on fluency and mastery of concepts. It is designed to provide pupils with a clear and smooth progression of learning through KS1 and KS2 and ensure that the teaching of calculation methods remains consistent across the 4 operations of addition, subtraction, multiplication and division. The consistent use of the CPA (concrete, pictorial, abstract) approach helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods. The school calculation policy builds progressively from the content and methods established in EVFS, with a recognition that concrete and pictorial representations of problems continue to play a valuable role throughout all key stages.

Age-stage expectations

The calculation policy is organised according to age-stage expectations as set out in the National Curriculum (2014); however, we recognise that pupils need to be taught at an appropriate level 'based on the security of pupil's understanding and their readiness to progress to the next stage' (National Curriculum). This 'readiness to progress' is a clear focus at this challenging time and there will be a clear emphasis on recapping and reviewing methods from previous years where needed.

Context for calculation

It is crucial that children are given real-life contexts and problems in which to use and apply their calculation methods. Children subsequently develop a more secure understanding of the purpose of calculations and learn to choose their operations with accuracy. This is a priority in an increasingly-challenging curriculum, with its focus on mastery.

Choosing a calculation method

Children must be taught and encouraged to use a simple process in deciding what approach to take to a calculation, ensuring that they select the most appropriate method for the problem, whether mental or written. Children need to be comfortable with a wide variety of strategies and representations in order to demonstrate this.

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10s and 1 s to develop their calculation strategies, especially in addition and subtraction.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, sum, altogether, subtract, subtraction, find the difference, take away, minus, less, fewer, more, group, share, equal, equals, is equal to, is the same as, groups, equal groups, double, times, multiply, multiplied by, divide, divided by, share, group, shared equally, half, times-table

KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.

Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, decrease, equal groups, the product of, sharing, grouping, bar model

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Year 1 Addition			
Objective and Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: understanding the part-whole model	Use part-part-whole model; use cubes to add two numbers together, as a group or in a bar. Other resources can be used: teddy bears, shells, people, toy cars! The parts are 4 and 3. The whole is 7.	Children draw to represent the parts and understand the relationship with the whole. The parts are 4 and 3. The whole is 7.	$4+3=7$ 4 is a part, 3 is a part and the whole is 7.
Starting at the bigger number and counting on using number lines (using cubes or Numicon to help)	Start with the larger number and count on one by one. Bead strings can also be used.	A bar model to encourage children to count on rather than count all. Children may also draw a number line and count on in ones or in one jump.	$4+2=6$ Children place the larger number in their head and count on the smaller number to find the answer. They may also think of the number line as an abstract idea what is 2 more than 4? What is the sum of 2 and 4 ? What is the total of 4 and 2?
Regrouping to make 10 , using ten frames, counters, cubes, number lines and numicon			$6+5=11$ Children start to understand the idea of equality.

(2) Can use bar models to support.

| Adding 1 and
 2digit numbers
 to 20 | Children draw the ten frame and counters $/$ cubes.
 They may also partition the smaller number using
 the part-part-whole model to make 10 | $6+5=5+$ |
| :--- | :--- | :--- | :--- |

Year 2 Addition			
Adding three 1digit numbers	Children should look for number bonds to 10 , or doubles, to add more efficiently.	Children may draw a part-whole model or bar models to help.	$7+6+3=16$ $7+6+3=16$ 10
Adding a 2-digit number and ones - not crossing 10 - crossing 10	$\overline{\mathrm{TO}}+\mathrm{O}$ using base 10. Continue to develop understanding of partitioning and place value. $41+8$ Practical apparatus used to find the number bond to 10	Children to represent the base $10 \mathrm{e} . \mathrm{g}$, lines for tens and dot/crosses for ones. Children encouraged to count on from the larger number, crossing 10	Children can also use their number bonds to 10 to help: $\frac{38+5=43}{8+5=13, \text { so } 38+5=43}$

Adding two 2digit numbers - not crossing 10 - crossing 10	Children begin by adding 2-digit numbers with no exchange, using practical manipulatives to consolidate understanding alongside formal written methods (column addition). They then explore exchange	Children can represent Base 10 or place value counters in a place value chart (see left) or continue to use number lines, jumping to multiples of 10 to be more efficient (Add ones first then tens.)	Looking for ways to make 10 . $\begin{aligned} & 36+25= \begin{array}{l} 30+20=50 \\ 5+5=10 \\ 50+10+1=61 \end{array} \\ & 5 \end{aligned}$ Formal method: Children use the practical methods to show understanding in Ways to make ten.

Years 3-6 Addition			
Adding numbers with up to 3 digits - no exchange Year 3	Use Base 10 to solve practically, adding the ones first then the tens Place value counters and grids will also be used (see below) with no regrouping (exchange)	Children may draw counters using a place value grid	Introduce column method They will use a written column method, adding the ones first, then the tens, then the hundreds $\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$
Adding numbers with up to 3 digits - with exchange Year 3 We will start with exchange into 1 column, before moving onto exchanges in more than 1 column	We will use Base 10 Use of place value counters to add $\mathrm{HTO}+\mathrm{TO}, \mathrm{HTO}+$ HTO etc. When there are 10 ones in the 1 s column- we exchange for 1 ten, when there are 10 tens in the 10 s column- we exchange for 1 hundred.	Children can represent the counters in a place value chart, showing where they need to exchange:	Column method used: exchanging 10 ones for 1 ten; 10 tens in the 10 s column for 1 hundred. $\begin{array}{r} 243 \\ +368 \\ \hline 611 \end{array}$

Finding the difference	Compare physical objects and quantities (display them carefully so they represent a bar model) Calculate the difference between 8 and 5 .	Count on using a number line to find the difference; they can also draw cubes or other concrete objects to show what they need to calculate	Find the difference between 8 and 5 . $8-5$, the difference is Children to explore why $\begin{aligned} & 9-6= \\ & 8-5= \end{aligned}$ 7-4 have the same difference
Part-part-whole model Represent and use number bonds and related subtraction facts within 20	Use part-part-whole models to show the link to addition (the inverse) with practical equipment If 10 is the whole and 6 is one of the parts, what is the other part?	Draw the part-part-whole models pictorially	Move to using numbers within part-part-whole models

Year 2 Subtraction			
Regroup a ten into 10 ones Regrouping $=$ exchange	Use Base 10 to show practically that we can exchange a 10 for 10 ones	Show the exchange of a 10 for 10 ones in pictures	Written calculation $20-4=16$
Partitioning to subtract (without exchange) Regrouping $=$ exchanging tens for ones	Use Base 10 to show how to partition the number when subtracting without exchange	Children draw representations of Base 10 and show the subtraction by crossing off $43-21=22$	Written calculation $43-21=22$
Make 10	Children count on to the next 10 and the rest using practical equipment	Use a number line to count onto next 10 and the rest	Written calculation $93-76=17$

Years 3-6 Subtraction

Column method with exchange (more than 4digit numbers) Years $5 / 6$	See above - practical equipment still useful to consolidate understanding of exchange	See above	Formal column method (extend understanding of Os for place holders) $\begin{array}{r} { }^{2} \not{ }^{10} \times 10 \not{ }^{\prime \prime} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$
Column method to subtract numbers with up to 3 decimal places (same number of decimal places) Year 5	Place value counters to represent decimals	Children draw or represent counters on a place value grid that includes decimals	Formal column method, aligning decimal point accurately $\begin{aligned} & 4^{4}{ }^{1} .43 \\ & -2.7 \\ & \hline 2.73 \\ & \hline \end{aligned}$
Column method to subtract larger numbers; decimals (different number of decimal places) Year 6	See above - practical equipment still used where needed to give clarity	See above	$\begin{array}{r} { }^{146} 810,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline 730.314119 \mathrm{~kg} \\ -36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

Year 1 Multiplication			
Objective and Strategy	Concrete	Pictorial	Abstract
Recognising and making equal groups: repeated addition	Use cubes, Numicon and other objects in the classroom 3×4 $4+4+4$ Number lines can also be used to show repeated groups \square	Represent practical resources in a picture and use a bar model Pictorial representation alongside a number line	$3 \times 4=12$ $4+4+4=12$ Abstract number line showing 3 jumps of 4 $3 \times 4=12$

Doubling	Use cubes, Numicon and other objects in the classroom	Draw pictures to show how to double numbers Double 4 is 8 \square \square \square \square \square \square \square \square	$4 \times 2=8$
Counting in multiples	Use cubes, Numicon and other objects in the classroom	Draw representations to show counting in multiples Real life pictorial support can be used:	$2 \times 4=8$

Year 2 Multiplication

Arrays - showing commutative multiplication	Objects can be laid out in arrays to find 2 lots of 5 (and 5 lots of 2) for example. Physical objects can also be used to create arrays (cubes)	Children draw their own arrays to show understanding	$\begin{aligned} & 5 \times 4=20 \\ & 4 \times 5=20 \\ & 20=4 \times 5 \\ & 5+5+5+5 \end{aligned}$ Children can use the arrays to write multiplication sentences reinforcing repeated addition
Using the inverse relationship	Children will use practical objects to explore the relationship between multiplication and division		$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Years 3-6 Multiplication

	Year 1 Division		
Objective and Strategy	Concrete	Pictorial	Abstract
Sharing objects into groups	Use cubes and other objects in the classroom	Children use pictures or shapes to share amounts into equal groups. They may also use arrays or bar models as different pictorial representations	At this stage, children do not need to record division formally but can use language like '20 shared between 5 is 4'
Division as grouping eg. I have 20 apples and put them in groups of 5 . How many groups do I have?	Use cubes and other practical manipulatives to group objects -00000-00000-00000-00000-	Draw pictures to show groupings Children may also use number lines to count in groups, or multiples	$20 \div 5=4$ (children are introduced to the division symbol in Year 2)

Year 2 Division

Years 3-6 Division

Long division (multi-digits by a 2-digit number) Year 6	When children begin to divide larger numbers, written methods become more efficient; concrete and pictorial methods are less effective (see right)		1. Divide 2. Multiply 3. Subtract 4. Bring the next number down 5. Repeat
Long division (multi-digits by a 2-digit number) with remainders			When a remainder is left at the end of a calculation, children can leave it as a remainder or convert it to a fraction, or decimal depending on the question. They may also need to round
Year 6			

